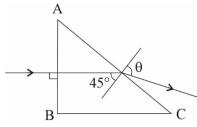
Solutions to JEE Advanced Home Practice Test -1 | JEE 2024 | Paper-2

PHYSICS

SINGLE DIGIT INTEGER TYPE

1.(2)
$$\mu \sin 45^\circ = \sin \theta$$

$$\therefore \sin \theta = \frac{1 + 0.4t}{\sqrt{2}} = \frac{1.4}{\sqrt{2}} \text{ at } t = 1 \sec \theta$$



Differentiating, $\cos \theta \cdot \frac{d\theta}{dt} = \frac{0.4}{\sqrt{2}}$

$$\therefore \frac{d\theta}{dt} = \frac{0.4}{\sqrt{2}} \frac{1}{\sqrt{1 - \sin^2 \theta}} = \frac{0.4}{\sqrt{2}} \cdot \frac{1}{\sqrt{1 - \frac{1.4 \times 1.4}{2}}} rad / \sec = \frac{0.4}{\sqrt{0.04}} rad / \sec$$

$$\frac{d\theta}{dt} = 2rad / \sec$$

2.(8)
$$A_1 V_1 = A_2 V_2$$
; $\rho_{air} = 1 kg / m^3$

$$P_a - \rho_{\text{water}} gh + \frac{1}{2}\rho_{\text{air}} (4V_2)^2 = P_a + \frac{1}{2}\rho_{\text{air}} (V_2)^2$$

$$\Rightarrow \frac{15}{2}\rho_{\text{air}}V_2^2 = \rho_{\text{water}}gh \Rightarrow V_2^2 = \frac{2\rho_{\text{water}}gh}{15\rho_{\text{air}}} \Rightarrow V_2 = 50 \, \text{m/s}$$

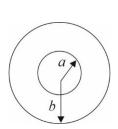
$$Q = A_2 V_2 = 16 \times 10^{-4} \times 50 = 80 \times 10^{-3} \, m^3 \, / \, s$$

3.(4)
$$\frac{q}{C} = \frac{-dq}{dt}R$$

$$\Rightarrow \int_{q_0}^{q_0/n} \frac{dq}{q} = \frac{-1}{RC} \int_0^{\tau} dt \quad \Rightarrow \quad \frac{\tau}{RC} = \log_e n$$

$$\Rightarrow R = \frac{\tau}{C \log_e n} \Rightarrow \rho \frac{b - a}{4\pi a b} = \frac{\tau}{C \log_e n}$$

$$\therefore \qquad \rho = \frac{4\pi ab\tau}{(b-a)C\log_e n} \qquad \therefore \qquad x = 4$$



4.(6)
$$\frac{1}{2}KR^2 + mg2R = \frac{1}{2}mV^2$$

$$\Rightarrow mgR + 4mgR = mv^2 \Rightarrow v = \sqrt{5gR}$$

$$N = \frac{mV^2}{R} + mg = 5mg + mg \Rightarrow N = 6mg$$

5.(2)
$$\alpha = \frac{\tau_C}{I_C} = \frac{mg.x}{mb^2 - m(b-x)^2 + mx^2}$$
 \Rightarrow $\alpha = \frac{gx}{2bx}$ \Rightarrow $\alpha = \frac{g}{2b}$

6.(3)
$$N_V = 0 = B - A(V - 1)^2$$
 for V_{max} and V_{min}
$$V_{\text{min}} = 1 - \sqrt{\frac{B}{A}}; \qquad V_{\text{max}} = 1 + \sqrt{\frac{B}{A}}$$

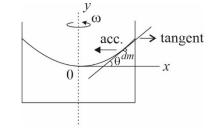
$$V_{\text{max}} = \frac{V_{\text{max}}}{\int_{0}^{V_{\text{max}}} \left[B - A(V - 1)^2\right] T \, dV} = \frac{4}{3} \frac{BT_0}{N_0} \left[\frac{B}{A}\right]^{1/2}$$

ONE OR MORE THAN ONE CHOICE

 $acc. = \omega^2 x$

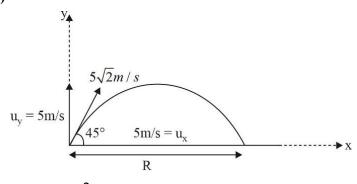
$$\tan \theta = \frac{acc.}{g}$$

$$\frac{dy}{dx} = \frac{\omega^2 x}{g} \implies y = \frac{\omega^2}{g} \int x dx$$



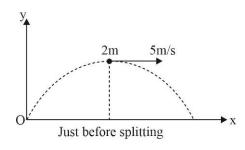
 $y = \frac{\omega^2}{2g}x^2$ \Rightarrow Parabolloid if parabolic curve is rotated about *y*-axis.

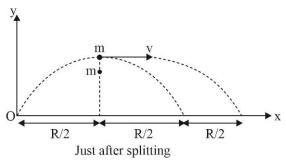
8.(AC)



Range
$$R = \frac{2u_x u_y}{g} = \frac{2 \times 5 \times 5}{10} = 5m$$

Time of flight
$$T = \frac{2u_y}{g} = \frac{2 \times 5}{10} = 1 \sec \theta$$





 \therefore Time of motion of one part falling vertically downwards is $= 0.5 \sec = \frac{T}{2}$

 \Rightarrow Time of motion of another part, $t = \frac{T}{2} = 0.5 \text{sec}$

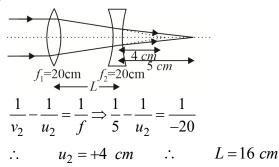
From momentum conservation $\Rightarrow P_i = P_f$

$$2m \times 5 = m \times v \implies v = 10 \, m \, / \, s$$

Displacement of other part in 0.5 sec in horizontal direction = $v \frac{T}{2} = 10 \times 0.5 = 5 m = R$

$$R = 5m = x$$
 \Rightarrow $t = 0.5 \sec$

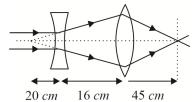
9.(AC)



After interchanging the lens

For convex lens
$$\frac{1}{v} - \frac{1}{-36} = \frac{1}{20}$$

$$\frac{1}{v} = \frac{1}{20} - \frac{1}{36} = \frac{1}{45} \quad \Rightarrow \quad v = 45 \, cm$$



10.(ABC)

$$\lambda_{\min} = \frac{hc}{eV} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 20 \times 1000} m \implies \lambda_{\min} = 0.62 \text{ Å}$$

Max loss in KE = 19.9 keV = Max energy of X-rays

 L_{α} X-ray may be emitted.

11.(AD)

(A)
$$I = \frac{V}{R} = \left(\frac{kQ}{r} - \frac{kQ}{2r}\right) \frac{1}{R}$$

$$I = \frac{Q}{8\pi\varepsilon_0 rR}$$

(D) Current at time t

$$I = \left(\frac{Q - q}{r} - \frac{Q + q}{2r}\right) \frac{1}{4\pi\epsilon_0 R} \quad \Rightarrow \quad I = \frac{1}{8\pi\epsilon_0 rR} (Q - 3q)$$

$$\Rightarrow \quad \frac{dI}{dt} = \frac{-3}{8\pi\epsilon_0 rR} I \quad \Rightarrow \quad \int_{I_0}^{I} \frac{dI}{I} = \frac{-3}{8\pi\epsilon_0 rR} \int dt \quad \Rightarrow \quad \log_e \left|\frac{I}{I_0}\right| = -\frac{3t}{8\pi\epsilon_0 rR}$$

$$I = I_0 e^{-\frac{3t}{8\pi\epsilon_0 rR}} \quad \Rightarrow \quad I = \frac{I_0}{2} \quad \Rightarrow \quad e^{\frac{3t}{8\pi\epsilon_0 rR}} = 2 \quad \Rightarrow \quad t = \frac{8\pi\epsilon_0 rR}{3} \ln 2$$

12.(C) Rate of decay $\propto a$

$$\Rightarrow -\frac{da}{dt} = Ka \Rightarrow -\int_{a_0}^{a} \frac{da}{a} = K \int_{0}^{t} dt \Rightarrow \log_e \left| \frac{a}{a_0} \right| = -Kt \Rightarrow a = a_0 e^{-Kt}$$
At t_0 , $\frac{a_0}{2} = a_0 e^{-Kt_0} \Rightarrow e^{Kt_0} = 2 \Rightarrow Kt_0 = \ln 2 \therefore K = \frac{\ln 2}{t_0}$
Again, $\frac{dv}{dt} = a_0 e^{-Kt} \Rightarrow v = \frac{a_0}{K} \left(1 - e^{-Kt} \right) \Rightarrow v_T = \frac{a_0}{K} = \frac{a_0 t_0}{\ln 2}$

NUMERICAL VALUE TYPE

$$220V$$
, $\omega = 60 \text{ rad/sec}$

$$P = i_{rms}V_R \Rightarrow i_{rms} = \frac{560}{140} = 4A$$

$$V_R^2 + V_L^2 = V_{rms}^2$$

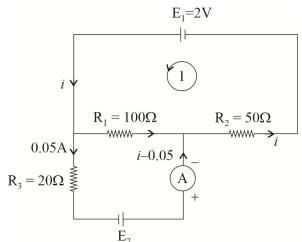
$$V_I^2 = (220)^2 - (140)^2 \implies V_I = 120\sqrt{2}$$

Also,
$$V_L = i_{rms} \cdot X_L$$

$$120\sqrt{2} = 4\omega L$$
 \Rightarrow $L = \frac{120\sqrt{2}}{4 \times 60}$ \Rightarrow $L = \frac{\sqrt{2}}{2} = \sqrt{\frac{1}{2}}$

14.(1.33)

$$2-100(i-0.05)-50i=0 \implies 7=150i \implies i=\frac{7}{150}A$$



$$-20 \times 0.05 + E_2 + \left(\frac{7}{150} - 0.05\right) 100 = 0 \implies -1 + E_2 + \frac{14}{3} - 5 = 0$$

$$E_2 = 6 - \frac{14}{3} = \frac{4}{3}V = 1.33V$$

15.(3.63)

Zero of vernier will lie close to 78-6=72 division

Reading =
$$72 \times 0.5 + 6 \times 0.05 = 36.3 \, mm = 3.63 \, cm$$

16.(4) ω will be same for both stars

$$\frac{V_{areal_1}}{V_{areal_2}} = \frac{\frac{1}{2}\omega r_1^2}{\frac{1}{2}\omega r_2^2} \quad \Rightarrow \quad \frac{V_{areal_1}}{V_{areal_2}} = \frac{r_1^2}{r_2^2}$$

Also,
$$M_1 r_1 = M_2 r_2$$
 (C.O.M.)

$$\frac{r_1}{r_2} = \frac{M_2}{M_1}$$

$$\frac{V_{areal_1}}{V_{areal_2}} = \frac{M_2^2}{M_1^2} = \left(\frac{6M}{3M}\right)^2 = 4$$

17.(3)
$$i_1 = 2e^{-t}$$

Initial current = $i_{1,0} = 2A$

$$\frac{dq}{dt} = 2e^{-t} \qquad \Rightarrow \qquad \int_{q_0}^{q} dq = 2\int_{0}^{t} e^{-t} dt$$

$$\Rightarrow q - q_0 = -2\left(e^{-t} - 1\right) \Rightarrow q = q_0 + 2\left(1 - e^{-t}\right)$$

$$\downarrow I\Omega \qquad 2H \qquad \downarrow i - i_1 \qquad \downarrow i_1 \qquad 1F$$

$$E - i - 2\frac{di}{dt} - (i - i_1)2 = 0$$

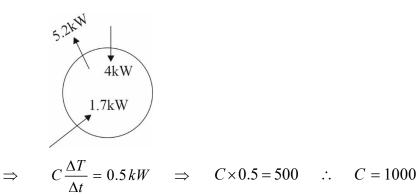
$$2(i - i_1) - \frac{q}{1} = 0 \Rightarrow i - i_1 = \frac{q}{2} \Rightarrow \frac{di}{dt} - \frac{di_1}{dt} = \frac{i_1}{2}$$

$$\frac{di}{dt} = -2e^{-t} + e^{-t} = -e^{-t} \Rightarrow \int_0^{E/3} di = \int_0^\infty e^{-t} dt$$

$$\Rightarrow \frac{E}{3} = \left| \frac{-1}{e^t} \right|_0^\infty \Rightarrow \frac{E}{3} = 1 \therefore E = 3 \text{ volt}$$

18.(1000)

Net rate of heat loss = 4kW + 1.7kW - 5.2kW



CHEMISTRY

SINGLE DIGIT INTEGER TYPE

- **1.(3)** The difference between Ist and 2nd I.E of element P is maximum among all. So, P is alkali metal and n is given less than 6. Hence atomic no P is 3.
- 2.(5) Only polar molecules can be attracted by a charged comb. So, except S_2 , CS_2 and $p C_6H_4(Cl)_2$, all can be attracted in electric field.
- 3.(4) eq.wt. of $K_2Cr_2O_7 = \frac{\text{molar mass}}{6}$ eq. wt. of $KMnO_4 = \frac{\text{molar mass}}{5}$ eq. of $Na_2S_2O_3 = \text{eq. of } I_2 \text{ liberated} = \text{eq. of } KMnO_4 + \text{eq. of } K_2Cr_2O_7$ Or $N \times 1 = 0.02 \times 5 + 0.05 \times 6 \implies N = 0.4 \text{ or } M = 0.4 \implies M = 4 \times 10^{-1}$
- 4.(4) $\operatorname{CrO}_{4}^{2-} \xrightarrow{\operatorname{H}^{+}} \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$ $\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + \operatorname{H}_{2}\operatorname{O} + \operatorname{H}^{+} \xrightarrow{\operatorname{CrO}_{5}} \operatorname{Chromium peroxide}_{\text{(blue)}}$

Which are in -1 oxidation state.

5.(5) At pH = 2 (highly acidic), the structure of the peptide will be as shown below.

So, $|Z_1| = 4$

At pH = 7 it will exist as neutral or zwitter-ion structure as shown below:

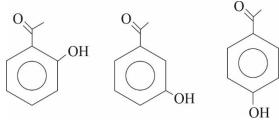
So, according to this condition, $|Z_2| = 0$

At pH = 11 (highly basic), the given peptide will exist as:

So,
$$|Z_3| = |-1| = 1$$

 $|Z_1| + |Z_2| + |Z_3| = 4 + 0 + 1 = 5$

6.(3) 3 (considering that all isomers satisfy the given conditions) Since given compound produces yellow colour with NaOI solution.



So, Total isomeric structures = 3

ONE OR MORE THAN CHOICE

7.(ABC)

Diamagnetic (all electrons paired) are repelled i.e., magnetized in opposite direction in magnetic field, so such substance are deflected upwards in magnetic field.

Diamagnetic substances are $K_4[Fe(CN)_6]$, NaCl(s)

Paramagnetic substances (at least one unpaired electron) are attracted in magnetic field, so such substances are deflected downwards.

$$O_2^-\big(g\big)\!:\!\sigma_{1s^2}^{}\sigma_{1s^2}^*\sigma_{2s^2}^{}\sigma_{2s^2}^*\sigma_{2p_z^2}^{}\pi_{2p_z^2}^{}=\pi_{2p_y^2}^{}\pi_{2p_x^2}^*=\pi_{2p_y^1}^*$$

Since O_2^- molecules has one unpaired electrons in antibonding π^* . MO.

So KO_2 is paramagnetic. And $B_2(1)$ is also paramagnetic.

8.(A) The order of the above reaction is one $(S_N 1)$ because carbocation intermediate is stablised by resonance.

So, for a 1st order reaction

$$\frac{P}{P_0} = e^{-kt}$$

$$\ln\left[\frac{P}{P_0}\right] = -kt$$

$$\left(1 - \frac{P}{P_0}\right) = \left(1 - e^{-kt}\right)$$

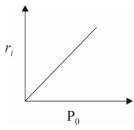
$$\frac{P_0 - P}{P_0} = \left(1 - e^{-kt}\right)$$



or
$$\frac{[Q]}{P_0} = (1 - e^{-kt})$$

So, graph between $\frac{(Q)}{P_0}$ Vs. t, should be as shown in figure (1), so, option (C) is incorrect

For a first order reaction



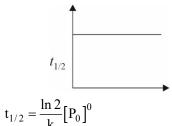
$$r = k[P]^{1}$$

At
$$t = 0, r_i = k[P_0]$$

So, initial rate of reaction is directly proportional to initial conc. of P.

Hence option B is also incorrect.

For a first order reaction



So, $t_{1/2}$ is independent of initial conc. of reactant. So, option (A) is correct.

9.(ABD)

Fact (Thermite process reaction not occurs in blast furnance)

10.(AB)

Fact

$$2Al + 2KOH + 2H_2O \longrightarrow 2KAlO_2 + 3H_2$$

$$SiO_2 + HF \rightarrow H_2SiF_6 + H_2O$$

11.(ABC)

 pK_b value of these bases are respectively 13.2, 3.35, 3.05, 8.77

12.(AB)

On proceeding reverse, following observations are made:

Acetone obtained from (G) suggests that (G) is calcium acetate, (CH₃COO), Ca.

Therefore, compound (D) is acetone $(Me_2C = O)$

Thus, compound (F) would be isopropyl alcohol (Me₂CHOH).

Since, (D) is obtained from (C), (C) would be

Structure of (D) and (F) suggest that ester (A)

Should be

NUMERICAL VALUE TYPE

13.(5)
$$HA + OH^- \longrightarrow A^- + H_2O$$

a millimole 36.12×0.1

Millimole

Equ. Point
$$\simeq 0$$
 $\simeq 0$ 3.612 millimole

$$A^- + H^+ \longrightarrow HA$$

3.612mmole 18.06×0.1 m mole 0

Final 1.806mmole $\simeq 0$ 1.806 m mole

$$\therefore pH = pK_a + log \frac{\left[A^{-}\right]_0}{\left[HA\right]_0} = 5$$

$$As[A]=[A]$$
, So $pH=pK_a$

14.(54)
$$P = X_2.P^{\circ}$$

$$20 = \frac{180/18}{\frac{6}{M} + \frac{180}{18}} \times P^{\circ} \qquad \dots (i)$$

and
$$20.02 = \frac{11}{\frac{6}{M} + 11} \times P^{\circ}$$
 ...(ii)

Hence, M = 54

15.(19) P.E. =
$$-\frac{Kq_1q_2}{r}$$

P.E. of one H-atom in ground state =
$$-\frac{K(e)(e)}{r}$$

P.E. =
$$\frac{-9 \times 10^{9} \times (1.6 \times 10^{-19})^{2}}{0.529 \times 10^{-10}} = -43.5538 \times 10^{-19} \,\text{J/atom}$$

So, P.E. of two H-atoms (or one molecule of $\rm\,H_2$)

$$= -2 \times 43.5538 \times 10^{-19} = -87.106 \times 10^{-19} \,\text{J/molecule}$$

16. (14.70)

OH
$$NH_{2}$$
(i) NaNO₂+ HCl/0-5°C
(ii) NaOH
$$N_{2}^{+}Cl^{-}$$
(molar mass = 185)
(P)
$$OH$$

$$N_{2}^{+}Cl^{-}$$
OH
$$OH$$

$$N_{2}^{+}Cl^{-}$$
(Q)

Moles of $P = \frac{18.5}{185} = 0.1 = \text{ moles of } Q.$

So, mass of (Q) = $0.1 \times 196 \times 0.75 = 14.70$ gm.

17.(169)
$$\Delta S^0 = S_{CH_4} - (S_{grap} + 2 \times S_{H_2}) = 186.2 - (6.0 + 2 \times 130.6) = -81 \text{ J/K}$$

Now, $\Delta G^\circ = \Delta H^\circ - T$. $\Delta S^\circ = -T$. ΔS_{univ}
or, $(-75 \times 10^3) - 300 \times (-81) = -300 \times \Delta S_{univ}$ $\Rightarrow \Delta S_{univ} = 169 \text{ J/K}$

18.(1)
$$M^{2+} + H_2S \Longrightarrow MS(S) + 2H^+$$

For ppt. of MS(s), $Q < k_{eq}$

or,
$$\frac{\left[H^{+}\right]}{\left[M^{2+}\right]\left[H_{2}S\right]} < \frac{K_{a_{1}}.K_{a_{2}}}{K_{sp}}$$

or,
$$\frac{\left[H^{+}\right]^{2}}{0.04 \times 0.1} < \frac{10^{-7} \times 1.5 \times 10^{-13}}{6 \times 10^{-21}}$$

$$\therefore \qquad \left[H^{+}\right]_{max} = 0.1M \Longrightarrow P_{min}^{H} = 1.0$$

MATHEMATICS

SINGLE DIGIT INTEGER TYPE

1.(6)
$$t_r = \frac{a_r^3}{1 - 3a_r + 3a_r^2} = \frac{a_r^3}{a_r^3 + (1 - a_r)^3} = \frac{r^3}{r^3 + (101 - r)^3}$$

$$\Rightarrow t_r + t_{101 - r} = 1 \quad \therefore \quad S_{100} = \sum_{r=1}^{50} (t_r + t_{101 - r}) = 50$$

$$S_{101} = S_{100} + t_{101} = 50 + 1 = 51$$
Sum of digits = 5 + 1 = 6

2.(7) Let
$$P(E_1) = a$$
, $P(E_2) = b$ and $P(E_3) = c$

$$3a(1-b)(1-c) = (1-a)b(1-c) = 9(1-a)(1-b)c = 3(1-a)(1-b)(1-c)$$

$$\frac{3a}{1-a} = \frac{b}{1-b} = \frac{9c}{1-c} = 3 \implies a = \frac{1}{2}, b = \frac{3}{4}, c = \frac{1}{4}$$

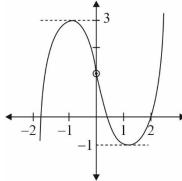
$$\text{Now,} \begin{vmatrix} 1/2 & 3/4 & 1/4 \\ 3/4 & 1/4 & 1/2 \\ 1/4 & 1/2 & 3/4 \end{vmatrix} = \frac{1}{64} \begin{vmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -\frac{9}{32}$$

$$\therefore \frac{a}{b} = \frac{9}{32} \implies a+b=41$$

$$(a+b+1)/6 = 7$$

3.(7)
$$f'(x) = 3x^2 - 3 = 3(x-1)(x+1)$$

 $f(1) = -1, f(-1) = 3$



Where
$$-2 < x_1 < -1$$
, $0 < x_2 < 1$, $1 < x_3 < 2$

$$\therefore f(f(x)) = 0 \implies f(x) = x_1 \text{ has 1 solution}$$

 $f(x) = x_2$ has 3 solutions and $f(x) = x_3$ has 3 solutions.

$$\therefore$$
 Number of solutions = 7

4.(2)
$$a_{ij} = 0 \ \forall \ i \neq j \text{ and } a_{ij} = (n-1)^2 + i, \ i = j$$
Sum of all the element of

$$= (2n-1)(n-1)^{2} + (2n-1)n = 2n^{3} - 3n^{2} + 3n - 1 = n^{3} + (n-1)^{3}$$
So, $T_{n} = (-1)^{n} \left[n^{3} + (n-1)^{3} \right] = (-1)^{n} n^{3} - (-1)^{n-1} (n-1)^{3} = V_{n} - V_{n-1}$

$$\Rightarrow \sum_{n=1}^{102} T_{n} = \sum_{n=1}^{102} (V_{n} - V_{n-1}) = V_{102} - V_{0} = (102)^{3} \Rightarrow \left[\frac{\sum_{n=1}^{102} T_{n}}{520200} \right] = 2$$

5.(0)
$$I_{1} = \int_{-4}^{-5} e^{(x+5)^{2}} dx = (-5+4) \int_{0}^{1} e^{((-5+4)x-4+5)^{2}} dx$$
$$I_{1} = -\int_{0}^{1} e^{(x-1)^{2}} dx \qquad(i)$$

Again let
$$I_2 = \int_{1/3}^{2/3} e^{9\left(x - \frac{2}{3}\right)^2} dx$$

$$I_2 = \left(\frac{2}{3} - \frac{1}{3}\right) \int_0^1 e^{9\left[\left(\frac{2}{3} - \frac{1}{2}\right)x + \frac{1}{3} - \frac{2}{3}\right]^2} dx = \frac{1}{3} \int_0^1 e^{(x-1)^2} dx = \frac{1}{3} \left(-I_1\right)$$
 (ii)

Then
$$I = I_1 + 3I_2 = I_1 + 3\left(-\frac{I_1}{3}\right) = I_1 - I_1 \implies I = 0$$

$$\int_{-4}^{-5} e^{(x+5)^2} dx + 3 \int_{1/3}^{2/3} e^{9\left(x - \frac{2}{3}\right)^2} dx = 0$$

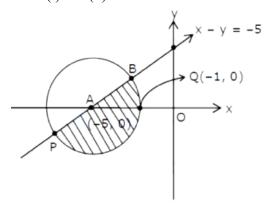
6.(8) Given,
$$|z+5| \le 4$$

$$\Rightarrow (x+5)^2 + y^2 \le 16 \qquad \dots (i)$$

Also,
$$z(1+i)+\overline{z}(1-i) \ge -10$$

$$\Rightarrow x-y \ge -5$$
 (ii)

From (i) and (ii) Locus of z is the shaded region in the diagram.



|z+1| represents distance of 'z' from Q(-1, 0) Clearly 'P' is the required position 'z' when |z+1| is maximum.

$$P = \left(-5 - 2\sqrt{2}, -2\sqrt{2}\right) \qquad \therefore \qquad \left(PQ\right)_{\text{max}}^2 = 32 + 16\sqrt{2}$$

$$\Rightarrow \qquad a = 32; \qquad b = 16$$

$$\Rightarrow \qquad 32x^2 = 4(16y^2 + 32 \times 16) \qquad \Rightarrow \qquad 8x^2 - 16y^2 = 32 \times 16$$

$$\Rightarrow \qquad \frac{x^2}{4 \times 16} - \frac{y^2}{32} = 1 \qquad \Rightarrow \qquad \frac{x^2}{8^2} - \frac{y^2}{32} = 1$$
Length of LR is $\frac{2b^2}{a} = \frac{2 \times 32}{8} = 8$

ONE OR MORE THAN ONE CHOICE

7.(ACD)

Apply L hospital rule for both limits

$$\ell_1 = \frac{4}{3};$$
 $\ell_2 = 1$
 $3\ell_1 + 4\ell_2 = 8$

8.(ABCD)

Given
$$x^2 + y^2 - 2x - 2y + 1 = 0$$
 (i)
 $y = mx$ (ii)
Solving $(1+m^2)x^2 - 2(m+1)x + 1 = 0$

$$L.C = |x_1 - x_2|\sqrt{1+m^2} = \frac{\sqrt{4(m+1)^2 - 4(m^2+1)}}{(1+m^2)}\sqrt{1+m^2} = \sqrt{\frac{8m}{1+m^2}}$$

$$\sqrt{\frac{8m}{1+m^2}} = \frac{4}{\sqrt{5}} \implies 16m^2 + 16 = 40m \implies 2m^2 - 5m + 2 = 0 \implies m = 2, \frac{1}{2}$$

$$f(m) = \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \sqrt{\frac{8m}{1+m^2}} \times \frac{1}{\sqrt{1+m^2}}$$

$$\implies f'(m) = 0 \implies m^2 = 1/3$$

9.(ABD)

Graph is symmetrical about (4, 0)

$$\Rightarrow f(4+x) = -f(4-x) \Rightarrow f(x) = -f(8-x)$$

Now let f(x) = 2020 then f(8 - x) = -2020

$$\Rightarrow$$
 $f^{1}(2020) + f^{1}(-2020) = 8$

 \Rightarrow Option A is correct and

$$\int_{-2020}^{4} f(x)dx = -\int_{4}^{2028} f(x)dx \quad \therefore \quad \int_{-2020}^{2028} f(x) dx = 0$$

Also
$$D = (f'(10))^2 + 4f'(10) > 0$$

$$\therefore f'(-100) > 0 \Rightarrow f'(10) \ge 0$$

$$\Rightarrow$$
 $x^2 - f'(10) x - f'(10) = 0$ has real roots

As
$$f'(4+x) = f'(4-x)$$

$$\Rightarrow$$
 $f'(10) = f'(-2) = 20$

10.(AD)

$$L_1: x = y = z$$

$$L_2: \frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{-1}$$

Shortest distance =
$$\frac{1}{\sqrt{2}}$$

Equation of plane containing line L_2 and parallel to L_1

$$y - z + 1 = 0$$

Distance of origin from this plane = $\frac{1}{\sqrt{2}}$

11.(AD)

The vector equation of the line through P and parallel to \vec{A} is

$$\vec{r} = (5\hat{i} + 7\hat{j} - 2\hat{k}) + t(3\hat{i} - \hat{j} + \hat{k}) = (5 + 3t)\hat{i} + (7 - t)\hat{j} - (2 - t)\hat{k} \qquad \dots (i)$$

The vector equation of the line through Q and parallel to \vec{B} is

$$\vec{r} = (-3i + 3\hat{j} + 6\hat{k}) + t'(-3\hat{i} + 2\hat{j} + 4\hat{k}) = -(3 + 3t')\hat{i} + (3 + 2t')\hat{j} + (6 + 4t')\hat{k} \dots (ii)$$

Let the third vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ intersects line (i) and (ii) in L and M.

So,
$$m(2\hat{i} + 7\hat{j} - 5\hat{k}) = \overrightarrow{LM} = PV \text{ of } M - PV \text{ of } L$$

= $(-3 - 3t' - 5 - 3t)\hat{i} + (3 + 2t' - 7 + t)\hat{j} + (6 + 4t' + 2 - t)\hat{k}$

Thus,
$$-8-3t-3t'=2m$$
, $-4+2t'+t=7m$, $8+4t'-t=-5m$

Solving these we get

$$m = -1, t = -1, t' = -1$$

Thus, the PV of L is $2\hat{i} + 8\hat{j} - 3\hat{k}$ and the PV of M is $\hat{j} + 2\hat{k}$

12.(D) Given
$$[(1-x)(1+x+x^2)]^n = \sum_{k=0}^n a_k x^k \frac{(1-x)^{3n}}{(1-x)^{2k}}$$

$$\Rightarrow \left[\frac{1+x+x^2}{\left(1-x\right)^2}\right]^n = \sum_{k=0}^n a_k \frac{x^k}{\left(1-x\right)^{2k}}$$

$$\Rightarrow \left[\frac{(1-x)^2 + 3x}{(1-x)^2} \right]^n = \sum_{k=0}^n a_k \left(\frac{x}{(1-x)^2} \right)^k$$

$$\Rightarrow \left[1 + \frac{3x}{(1-x)^2} \right]^n = \sum_{k=0}^n a_k \left(\frac{x}{(1-x)^2} \right)^k$$
Put $\frac{x}{(1-x)^2} = t \Rightarrow (1+3t)^n = \sum_{k=0}^n a_k t^k$
Now $3a_{k-1} + a_k = 3 \left(\text{coeff of } t^{k-1} \right) + \text{coeff of } t^k$

$$= 3 \cdot 3^{k-1} {}^n C_{k-1} + 3^k \cdot {}^n C_k = 3^k \left\{ {}^n C_{k-1} + {}^n C_k \right\} = 3^k \cdot {}^{n+1} C_k$$

NUMERICAL VALUE TYPE

13.(673)

Let the angles are x° , y° , z°

$$x + y + z = 180$$
; $x, y, z \in I$

$$x, y, z \in I$$

All angles same 60,60,60

1,1,178

Case-II:

Two angles same

2,2,176 (88) 89,89,2

Case-III All the angles are different

$$(88+85+....+)+(86+83....)=1335+1276=2611$$

$$1 + 88 + 2611 = 2700$$

Number of zeros will be
$$\left\lceil \frac{2700}{5} \right\rceil + \left\lceil \frac{2700}{5^2} \right\rceil + \left\lceil \frac{2700}{125} \right\rceil + \left\lceil \frac{2700}{625} \right\rceil = 540 + 108 + 21 + 4 = 673$$

14.(7)
$$\left(1+x+\frac{1}{x^2}+\frac{1}{x^3}\right)^{10} = \frac{\left(1+x+x^3+x^4\right)^{10}}{x^{30}}$$

coefficient of x^{30} in $\left(1+x+x^3+x^4\right)^{10}$

$$= {}^{10}C_{10} {}^{10}C_0 + {}^{10}C_9 {}^{10}C_3 + {}^{10}C_8 {}^{10}C_6 + {}^{10}C_7 {}^{10}C_9 = 1 + 1200 + 9450 + 1200$$

Last digit of $(11853)^{11851} = 7$

15.(14)
$$9 + 8 + 6 + 5 + 4 = 32$$

 \Rightarrow Set $P(A, B, C, D, E, F) = (2, 3, 4, 5, 6, 8, 9)
 $n(S) = {}^{7}C_{5} \cdot 5!$$

For total number of numbers divisible by 4, the digits in unit and tens place can be filled in $(3 \times 2 + 2 \times 2 + 1 + 1)$ ways

So, total number of numbers thus formed = $60 \times 12 = 720$

16.(0)
$$\frac{\sin^2\left(x - \frac{\pi}{4}\right)}{\cos 2x} = \frac{\frac{1}{2}\left(\sin x - \cos x\right)^2}{\cos^2 x - \sin^2 x} = -\frac{1}{2}\tan\left(x - \frac{\pi}{4}\right)$$

Given equation reduces to $3^{\tan\left(x-\frac{\pi}{4}\right)} - 2\left(\frac{1}{9}\right)^{-\frac{1}{2}\tan\left(x-\frac{\pi}{4}\right)} + 1 = 0$

$$\Rightarrow 3^{\tan\left(x-\frac{\pi}{4}\right)} = 1 \Rightarrow x = n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$$

Which is not possible as $\cos 2x \neq 0$

17.(42)
$$I_n = \int_0^\infty e^{-x} (\sin x)^n dx$$

$$= \left[\sin^n x (-e^{-x}) \right]_0^\infty + \int_0^\infty n \sin^{n-1} x \cos x e^{-x} dx = 0 + n \int_0^\infty (\sin^{n-1} x \cos x) e^{-x} dx$$

$$= n \left[(\sin^{n-1} x \cos x) (-e^{-x}) \right]_0^\infty - n \int_0^\infty \{ -\sin^n x + (n-1) \sin^{n-2} x \cos^2 x \} (-e^{-x}) dx$$

$$= 0 + n \int_0^\infty e^{-x} \{ -\sin^n x + (n-1) \sin^{n-2} x (1 - \sin^2 x) \} dx$$

$$= n \int_0^\infty e^{-x} \{ (n-1) \sin^{n-2} x - n \sin^n x \} dx = n(n-1) I_{n-2} - n^2 I_n$$
We have, $(1+n^2) I_n = n(n-1) I_{n-2}$ then $\frac{I_n}{I_{n-2}} = \frac{n(n-1)}{n^2 + 1}$

18.(6) Let
$$\tan x = a$$
, $\tan y = b$, $\tan z = c$

Given system of equation is equal to

$$a+b+c=6-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$$

$$a^{2}+b^{2}+c^{2}=6-\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}$$

$$a^{3}+b^{3}+c^{3}=6-\frac{1}{a^{3}}-\frac{1}{b^{3}}-\frac{1}{c^{3}}$$

For second equation we complete squares to get

$$\left(a - \frac{1}{a}\right)^2 + \left(b - \frac{1}{b}\right)^2 + \left(c - \frac{1}{c}\right)^2 = 0 \quad \Rightarrow \quad a = b = c = \pm 1$$

Now rearranging 3rd equation and adding 3-time first equation, we get

$$a^{3} + b^{3} + c^{3} + \frac{1}{a^{3}} + \frac{1}{b^{3}} + \frac{1}{c^{3}} + 3\left(a + \frac{1}{a} + b + \frac{1}{b} + c + \frac{1}{c}\right) = 6 + 18$$

$$\left(a + \frac{1}{a}\right)^3 + \left(b + \frac{1}{b}\right)^3 + \left(c + \frac{1}{c}\right)^3 = 24$$

Therefore a = b = c = 1

Hence,
$$\left[\frac{\tan(x)}{\tan(y)} + \frac{\tan(y)}{\tan(z)} + \frac{\tan(z)}{\tan(x)} + 3\tan(x)\tan(y)\tan(z) \right] = 6$$